
© ITIV 2017 DHL Feature Extraction 1

Prof. Dr.-Ing. Dr. h.c. J. Becker

Digital Hardware Design Laboratory (DHL)

Institut für Technik der Informationsverarbeitung, Karlsruher Institut für Technologie (KIT)

Description for the Design of the Feature Extraction

1 System Structure and Components

In the digital Hardware Design Laboratory (DHL), students are introduced to the techniques

of FPGA-based hardware design. Just like laboratory circuit design (Labor Schaltungsdesign)

and the Laboratory Software Engineering, DHD is part of the ITIV laboratory project on

“autonomously driving TivSeg”. Each of the laboratories deals with a different part of the

TivSeg system with DHL focusing on the image processing chain.

In the use case scenario of autonomously driving TivSegs, a TivSeg driving in front is

marked with a two-colored pattern. An FPGA-based image processing system mounted on a

following TivSeg needs to recognize this pattern in input images by extracting similar

prominent areas, the so-called Regions. The digital representations of these Regions are called

Features and can be described by their start/end positions in horizontal and vertical direction.

In the Software Engineering Laboratory, the extracted Regions/Features are used to detect

changes in the relative position of two TivSegs in software. This information is used to

generate control signals for the engines, such that the pursuing TivSeg does not lose sight of

the pattern and continuously follows the other TivSeg.

In the autonomous TivSeg project, a Microsoft Kinect camera is used for image capturing.

The image processing chain extracts two color channels, which roughly correspond to the two

colors used for the pattern. Each color channel is converted into a black/white image serving

as input for the so-called Region-Growing algorithm, which infers rectangular Regions from

the coherent areas in the image.

The overall system of the ITIV laboratory project is shown in Figure 1. The digital Hardware

Design (DHD) Laboratory mainly focusses on the system components in the green frame.

TivSeg Chassis

ZEDBOARD
Kinekt

U
S
B

ZYNQ
FPGA

H
D
M
I

CTRL
Board

UART

Display

Motors

Accelerometer

μC

UART

PC

UART

Android
Mobile
phone

B
lu

et
o

o
th

Yaw Rate
Sensors

DHDDHD

Figure 1: System overview of the ITIV project laboratories

© ITIV 2017 DHL Feature Extraction 2

In the DHD laboratory, the ZEDBOARD (http://zedboard.org) is used as target platform. The

board is equipped with a System-on-Chip (SoC) from the Xilinx Zynq family, which

integrates reconfigurable FPGA logic and two ARM Cortex M9 processor cores on a single

chip. The FPGA part of the Zynq is called Processing Logic (PL), whereas the ARM cores

form the Processing System (PS). Both subsystems are connected by bus interfaces.

The goal of the laboratory is the realization of the FPGA-logic part of the pattern recognition.

For that matter, the ARM processors forward pixel data from the Kinect camera to the

Feature Extraction Core, which will be implemented in this laboratory. This core extracts the

Features from the input image and later returns them back to the processor. Each Feature is

represented by a rectangle which bounds an equally colored area in the image.

A structural overview of the Zynq system realizing the image processing chain is shown in

Figure 2. The transfer of pixel data from the ARM processors to the Feature Extraction Core

(AXI Filter) is implemented in the one case using a register based interface, which can be

accessed via the AXI Lite Bus (a simple peripheral AXI bus). As an alternative, pixel transfer

can be accelerated using Direct Memory Access (DMA). This is why an AXI Stream

interface is part of the project templates as shown in the lower branch of Figure 2Figure 1.

The DDR memory, which is used for the DMA, resides outside of the Zynq Chip and can be

accessed using the on-chip DDR Memory Controller.

Kinekt

ZYNQ FPGA

U
S
B

Dual-core
ARM

Prozessor

Pixel

AXI
DMA

AXI Filter

Bus IF

Bus IF

Pixel data

CTRL, Status, Features

AXI Stream

HDMI
Core

SPDIF
Core

A
X

I

A
X

I L
it

e

ADV7511

H
D

M
I Display

DDR
Memory

P
ix

el
,

DDR-
Controller

AXI Filter
User Logic

 C
TR

L
et

c.

Figure 2: Structure of the FPGA-design realizing the Feature Extraction

The overall virtual data path resulting from the structure in Figure 2 in conjunction with the

provided ARM-software is shown in Figure 3.

Kinekt
Dual-core

ARM

Pixel data

AXI Filter

Features

AXI Lite

Dual-core
ARM

HDMI
Core H

D
M

I

Display
ADV7511

AXI Lite

U
SB

AXI

Figure 3: Data flow of the image processing chain

Figure 4 shows the general integration of the Feature Extraction Module into the design and

the interconnection to the AXI bus. The actual bus interface is realized using AXI interfacing

cores provided by Xilinx (the AXI Lite IPIF and AXI Stream IPIF cores). The user logic

module is accessed in AXI Lite templates through a register-based interface. Such a template

was extended using an AXI Stream interface to enable efficient transmission of pixel data

through the AXI Direct Memory Access (DMA) Core. The top level structure of the actual

Feature Extraction Pipeline Hardware is illustrated in Figure 5.

http://zedboard.org/

© ITIV 2017 DHL Feature Extraction 3

AXI Filter

AXI Lite
Bus

AXI Lite
IPIF

AXI Filter User Logic

CTRL, Status,
Feature Registers

R
eg

is
te

r
A

cc
es

s

Feature Extraction
Pipeline Hardware

AXI
Stream

Bus

AXI
Stream

IPIF

DMA Bursts
Pixel

Buffer

RGB Pixels

Figure 4: Interconnect between the Feature Extraction Pipeline and the AXI bus

The top structure of the image processing chain (Feature Extraction Pipeline Hardware) is

composed of the components illustrated in Figure 5.

Filter Chain Pink

Filter Chain Blue

RGB
Pixels

Filtered Pixels
Black/White

Region Detect Color 1

Region Detect Color 2

Feature
Registers

RGB Pixel
Register

HSV
Pixels

RGB to
HSV

Figure 5: Top level structure of the Feature Extraction

The pattern that is mounted on the TivSeg in the front is shown on the left hand side of Figure

6. The RGB color space is less suitable for detecting the patter, because fluctuations of the

ambient light generally affect all coordinates of a color vector in the RGB cube (Figure 6,

middle). In contrast, the HSV (Hue Saturation Value) color space contains a separate

coordinate for the brightness (Value), such that changes in ambient light only affect this

parameter (as long as the ambient light can be assumed to be white). The HSV color space

can be visualized as a color cone (Figure 6, right hand side) with the hue corresponding to the

angle, the saturation representing the radius and the value matching the height. Since the

pattern relies on color differences with large saturation values, the value coordinate can be

ignored during pattern recognition. Given that, the influence of ambient light fluctuations is

eliminated through the use of HSV coordinates. For that reason, the first step in the image

processing chain is the conversion of the input RGB image to HSV color space.

Figure 6: Left: pattern mounted on the TivSegs; Middle: RGB cube1; HSV cone2

Because the later processing steps rely on black/white images as input, the image data of

selected color channels are classified and represented by a single bit per pixel. Since the

pattern contains two relevant colors, two black/white images are generated while each image

corresponds to one of the two colors. The left side of Figure 7 shows the two black/white

images generated from the pattern in Figure 6 when pixels of the corresponding color are

considered white.

After that, a simple noise reduction is applied on the black/white images by outputting a ‘1’-

pixel only if there are enough ‘1’-pixels present in a selected area of the input image (e.g. 3x3

© ITIV 2017 DHL Feature Extraction 4

matrix of pixels). This reduces the probability of erroneous pattern detection caused by noise

and smaller disturbance.

Figure 7: Left, middle: ideal images after the color filtering for blue/pink; Right: run-length encoding3

After noise filtering, the pixel data is passed over to the so called Region Detect Core. The

core is composed of the components shown in Figure 8. The fist module is the Run-length

Encoder (RLE), which operates similar to the transmission encoding used in old fax

machines. The technique uses start and end markers for each individual series of subsequent

active pixels (“1”, white in Figure 7) within the same line. A set of markers produced by the

RLE is referred to as Run. The application of run-length encoding allows large image areas

with the same color to be stored efficiently and simplifies processing in the subsequent Label

Selection algorithm.

The purpose of the Label Selection algorithm is to detect connected areas in the image and

assign a unique number to each of them. The preceding run-length encoder helps to reduce

the number of decisions to be made in the process, because a run is always a sequence of

connected pixels, which can be entirely assigned to one region without considering individual

pixels. During label selection, each line of the image is compared with the previous line to

decide if the current run belongs to an existing region (update), if a new region has to be

created (new feature) or if two previously separated regions have to be merged (e.g. in case of

the “U” in Figure 7, upper right corner).

The Feature Calculation block stores and manages the known regions by creating, changing

or merging entries in the component’s memory according to the operations (New_Feature,

Update, Merge) specified by the Label Selection algorithm. After completion of the Feature

Calulation step, the resulting features are accessible to the ARM processor via the register set.

Black/White
Pixel Data

Features accessible
through Register Set

Run_length_
encoder

Label_selection

Feature_
calucation

FSMs,
BRAMs

Region_detect

Update/Merge Label/Feature
Update Start_pos/End_pos

New_Feature...

Update/Merge Label/Feature
Update Start_pos/End_pos

New_Feature...

Figure 8: Modules of the Region Detect Core

© ITIV 2017 DHL Feature Extraction 5

2 Provided Material

For the laboratory, a template design consisting of the Vivado Project including a source file

hierarchy and a configuration for the ARM-Processor as well as the AXI-Lite Interface of the

axi_filter_dma component including the register set and wiring within the Feature Extraction

is provided.

In contrast to exercise 4, the provided Vivado Designs instantiate the axi_filter_dma

component outside of the block design. Such as the clock and reset signals, the signals

connecting the component with the AXI bus have been exposed as external ports of the Block

Design. The axi_filter_dma component itself has been added to the project as simple set of

source files.

This change allows the individual components to be easily simulated using self-written

testbenches while still being able to generate a bitfile without switching between working

projects. Additionally, it is not necessary to re-package the axi_filter_dma component after

the source files have been changed. The functionality of the overall system is not affected by

this change, but the development of the component in the DHL laboratory is simplified.

To boot the ARM processors of the Zynq, a Linux system including a kernel image is

provided on a SD-Card. To run the overall system, it is solely necessary to add a hardware

binary to the SD Card created from the Vivado design.

To ease testing of modules, the template folder contains several predefined testbenches for

different components. If necessary, additional testbenches for your components can be

written by the laboratory participants.

3 Tasks and Approach

In the laboratory, an image processing pipeline should be developed on top of the provided

templates and the SD-Card containing the provided Linux system.

3.1 Guidelines Coding

3.1.1 Coding und Bad Smells

In case of disadvantageous logic modelling in VHDL, that the logic description

 Is not synthesizable at all

 Leads to an inefficient realization (long synthesis times, high consumption of

resources, bad timing = long asynchronous signal paths between flip-flops)

 Works in simulations but not on the actual hardware (Simulation mismatch)

Such problematic HDL descriptions should be absolutely avoided, for example:

 Not synthesizable

o Wait until (should be avoided), wait for X ns (not synthesizable)

 Inefficient or not realizable

o Description of large Memories (Arrays) without using Block-RAMs (BRAM)

 leads to large Complex Logic-Block (CLB)-Memories („distributed RAM“)

© ITIV 2017 DHL Feature Extraction 6

o Simultaneous reading/writing of Arrays (CLB-Memories) in different locations

Solution: better use Dual-Ported Block RAMs or instantiate the same BRAM

multiple times if absolutely essential.

o Writing shift-registers/Arrays on a variable Location (Behaviour: „Pointer on

shift-register“)

o Multiplication/Division with two variable Inputs without using self-written

components or hard-blocks.

Tip: Reduce calculations to multiplications/divisions by the power of two =

shift operation.

o Extensive asynchronous processes with a large number of dependencies and

input variables

 Simulation Mismatches

o Extensive use of variables within processes (a:=b, if X; c :=b if Y …)

o An asynchronous process depends on signals written by other asynchronous

processes

Note: Input values of asynchronous processes should always originate from

synchronous processes/signals! Use pipelining instead of asynchronous

process dependencies

o Write to BRAMs using asynchronous signals (Data Input/Write Address Port).

This does not work in most of the cases. Asynchronously setting the read-

address in contrast mostly works if the address calculation is not too time-

consuming. Anyway, it is strongly recommended to drive inputs of Hard-

Block IPs like BRAMs by signals written in synchronous processes.

Further important coding guidelines can be found in the additional materials for the

laboratory. Guidelines focusing on Verilog can also be transferred to VHDL in most of the

cases. For information on the instantiation of hard-blocks such as BRAMs it is recommended

to take a look on the ug901 Vivado Synthesis Guide, especially on the Chapter “HDL Coding

Techniques”.

© ITIV 2017 DHL Feature Extraction 7

3.1.2 Conversion/Casting Integer/Std_logic_vector/Unsigned/Signed

Figure 9: Conversion/Casting between data types in VHDL

3.2 Implementation and Simulation

During the seven afternoons of the laboratory, the processing chain should be developed and

simulated component-wise. Participants should use the provided testbenches for the

developed components and if necessary verify individual modules with their own tesbenches.

All results (realization, expected behavior and test outcome) should be documented in the

laboratory reports (see laboratory bulletin for details).

There is a sketch of the structure of the Feature Extraction Template in Figure 10. The sketch

shows that for example the Subsystem convert_filter.vhd consist of the component

rgb2hsv.vhd and filter_chain.vdh. The RGB2HSV converter in rgb2hsv.vhd reuses the

divider div_16_8_8.vhd which has been developed in exercise 3.

You can find all files at:

..\Feature_Extraction_Template_V3\IP_rep\axi_filter_dma_v1_00_a\hdl\vhdl

After the individual components where tested, the overall system is simulated incrementally

by testing distinct subsystems consisting of multiple components (according to Figure 11).

When testing the subsystem “Converter Filter”, Filter_Chain has to be instantiated twice.

When testing Region_detect, it also has to be instantiated twice. The successful simulation of

the components and subsystems needs to be demonstrated to the supervisors.

The Testbenches are at:

..\Feature_Extraction_Template_V3\Testbenches

© ITIV 2017 DHL Feature Extraction 8

Figure 10: VHDL component structure

RGB2HSV
Filter_Chain_1

Converter_FilterConverter_Filter

Filter_HWFilter_HW

RGB
Pixels

RGB
Pixels Run_length_

encoder

Label_selectionLabel_selection

Feature_
calucation

FSMs,
BRAMs

Region_detectRegion_detect

Register
Set

Register
SetComp1

Comp2
Comp3 Comp4 Comp5

System
Filter Hardware

Subsystem
Converter Filter

Subsystem
Label selection

Subsystem
Region Detection

Figure 11: Subdivision of the system in subsystems for structuring and testing purposes

3.3 Individual Components

The Filter Hardware component is controlled via the register set. Enable activates the

component, the RGB values are valid if data_rdy is on high-level, the minimum/maximum

values for hue and saturation are established before starting the actual image processing and

stay constant afterwards. Each time an image has been processed, a Resetn (low-active)

switches the system back to the initial state. For that reason, it is important to have a well-

defined initial state with each signal holding a known and reasonable value.

3.3.1 RGB2HSV

This component is supposed to realize the conversion from RGB to HSV. For that purpose,

the algorithm for color space conversion presented in the following should be implemented as

VHDL logic. In this context it is important to consider the differences between sequential

programming in C and the simultaneous execution in hardware. Especially the use of

Pipeline-stages is beneficial to delay intermediate results and provide them as input for

further calculations in later clock cycles.

© ITIV 2017 DHL Feature Extraction 9

Since divisions with a divisor, which is not a power of two, cannot be synthesized by the

VHDL compiler without further ado, the divider developed in exercise 3 should be used here.

The divider divides a 17-bit two's complement signed by an 8-bit unsigned integer value and

provides a 9-bit two's complement signed as result (this preserves an 8-bit unsigned

resolution for further calculations after the division).

To convert pixel data to the HSV color space, the equations listed below should be used. It is

important to notice, that these equations assume RGB and SV values to be in the range of [0,

1]. In the hardware implementation however, 8-bit integer numbers are to be used for those

values. In case of the hue angle, the implementation should use a 9-bit integer representation

in degrees (0° - 360°). Furthermore, all the intermediate values such as the results of the

divisions should be represented as integer values of a defined bit width. To implement the

equations correctly and efficiently you thus have to make appropriate adaptions.

Precondition:

Postcondition:

3.3.1.1 Working with the template

This section explains how to work with the template. You can use this procedure for all other

components.

 First open rgb2hsv.vhd (Path see section 3.2)

 The entity is already completely defined and it is not necessary to edit it.

 In the architecture are some TODO-comments which have to be implemented

 Use the divider from the third exercise. To do so, use the keyword component to

include the module and instantiate it twice for Hue and Saturation (this has already

been done in the template). The next step is to wire the divider using the keyword port

map.

 In the next TODO you should describe the behavior of an asynchronous reset.

 The last TODO is located under rising_edge(clk). There you should implement the

presented algorithm for convert from the RGB to the HSV color space. It might be

necessary to create more signals or functions.

© ITIV 2017 DHL Feature Extraction 10

After implementing the RGB2HSV component, it should be tested. It is not necessary to write

your own testbench, since there is a predefined one at:

„\Feature_Extraction_Template_V2\Testbenches\rgb2hsv_tb.vhd“

The testbench defines in the beginning two new types “rgb_t” and “hsv_t” and two arrays

“rgb_data” and “hsv_data” made of these types (each with the size of 1000). The testing logic

is split into the two processes STIMULI_GEN and RESULT_TEST. Before using the

testbench, the component under test must first be included. The tested component is also

called “unit under test” which is why the instance is called “UUT”.

In the STIMULI_GEN the UUT is fed in each clock cycle with a RGB pixel from rgb_data.

The RESULT_TEST process monitors the result_rdy ouput. When the output is a high level

(“1”), the HSV values from the UUT are compared with the correct HSV values form

hsv_data array.

With the commands assert, report and severity the data will be compared and an appropriate

text will be printed with a given category (severity).

Figure 12: Possible structure of a testbench

More general information about testbenchs are given in „Overview: Testbenches and logic

simulation in VHDL“

To test with Modelsim:

 Run Modelsim

 change detection with: cd <new folder> (in the terminal)

 run the Modelsim-script (DO-file) with: do run.do (in the terminal)

3.3.2 Filter Chain

This component consists of two digital filters: classify (black/white filter) and filter major

(noise filter).

3.3.2.1 Classify

The module classify verifies every incoming pixel. If the hue and saturation values lie in

between hue_min/sat_min and hue_max/sat_max, the output value is set to “1”, if not the

filter returns “0”.

3.3.2.2 Filter Major

To generate a low noise image the pixel data is low-pass filtered by the filter major

component. On the left side in Figure 13 there is shown an ideal image, on the right side is a

noisy image. The noise may result from fine grained image details or image errors in the

camera. The basic idea is to suit the real (right) image to the ideal image. This especially

© ITIV 2017 DHL Feature Extraction 11

reduces the number of runs generated by the run length encoder and the number of regions

after the label selection.

Figure 13: Comparison of an ideal image after color space filtering and a real image with noise incidents,

which cause a multiplicity of small regions (white dots and artefacts)

The noise filter decides if an output pixel should be “1” or a “0” based on a quadratic 3x3

Matrix, which is shifted over the whole image (discrete convolution). Thereby, an input

parameter determines the minimum number of pixels with value “1” inside of a 3x3 block,

which are required to produce an output of “1”.

Before starting to compute output pixels, two lines of the input image must be buffered (two

so called line buffers with block-RAM are required). The line buffers should realize the first

in, first out (FIFO) principle similar to a shift register. In contrast to shift registers, the line

buffers should be implemented this behavior using a BRAM. However, data in a BRAM

cannot be easily moved from one address to the next, which is why the line buffers should be

realized using to the ring buffer principle (more details can be found in the following section).

After initially filling the buffers, the decision between the values “0” and “1” starts at the

third black/white pixel in the third line. To simplify implementation, the buffers are not

cleared at the end of a line. Instead the filtering process directly continues while the input

data is buffered for a delay of two lines before using it for a decision on pixel values.

Using this procedure, each of the components shrinks the output image by two lines while

sequentially two pixels are cut from the data stream.

Current
Input Pixel

Line Buffer 2

Line Buffer 1

Pixel Matrix

0

1

2

3

0 1 2 3 4 5 6 7

Image

Hardware Buffers

Line Buffer 2

Line Buffer 1

Pixel Matrix

0

1

2

3

0 1 2 3 4 5 6 7

Image

Hardware Buffers

Current
Input Pixel

A) First Output Pixel B) Second Output Pixel
Boarder of

Image

Figure 14: Image filtering using a 3x3 matrix and a threshold of PIXEL_COUNT=4, the Output pixel is the

pixel at position (3, 3) of the matrix.A) and B) show consecutive clock cycles. In the upper part of the figure die

© ITIV 2017 DHL Feature Extraction 12

input picture is shown, below how the entries of the filter matrix (Pixel Matrix) are filled with pixel data. The

blue dashed lines show where the left image boarder would occur for the pixel data inside the line buffers

After separate filtering of the hue and saturation images, the output pixels of both filter

components are combined using the logical AND conjunction. Subsequently another noise

filtering is applied, to further reduce noise artefacts in the combined output image.

Overall the signal flow is shown in Figure 15:

Figure 15: Signal flow diagram of Filter Chain

The size of the final output image of the component is reduced by four lines in the height and

four pixels sequentially. This circumstance is compensated by the software and has to be

considered in the design of the following components (e.g. pixel or line counters).

3.3.2.3 Working with the template

Figure 10 shows that Filter Chain consists of the components classify and filter major. Again,

filter major consists of line buffer, which needs ram_db. Therefore, it is useful to work

bottom up.

 First open classify.vhd (Path see section 3.2)

 The entity is already defined completely. It is not necessary to edit it.

 Your task is to write the architecture. To be synchronous to the other components like

the RGB2HSV component, it is necessary to choose a suitable sensitivity list. In this

process you can insert your logic implementation.

 There is no testbench given since this is a small component. However you can write

one on your own one using the RGB2HSV testbench as template.

 In exercise 3 you have already used BRAMs. The component ram_dp is a dual ported

Block RAM.

 Find an efficient way to implement a FIFO as ring buffer, when the read- and write

pointer of the dual ported BRAM are available (see Figure 16). How many addresses

does the line buffer need?

Figure 16: Line buffer implementation using the ring buffer principle

 Test your line buffer using the provided testbench.

 Open filter_major.vhd (Path see section 3.2)

 The component linebuffer is already included, instantiate it twice. Find a way to

realize the filter shown in Figure 14. Use one or more clock-synchronous processes.

© ITIV 2017 DHL Feature Extraction 13

 Test your filter with filter_major_tb.vhd. Note that the size of the image will change

and some pixel will get the value U (Uninitialized).

 Now, the subsystem filter_chain is complete. It is not necessary to test the whole

subsystem because all components in this subsystem have been tested separately. It

might be useful to calculate the size of the image after passing the subsystem.

3.3.3 Run-length Encoder

The run-length encoder extracts runs consisting of a start and end position from the input

pixel stream. Additionally “end of line“ and “end of file” signals are generated to enable

determination of the current line number in later processing steps. Without these signals, it

would not always be possible to determine the current line number in the run length encoded

image if there exists a line without any runs.

In the run-length encoder, it is reasonable to skip the 4 lines lost in the Converter Filter

component at the end of the image (LINES_LOST), to initialize the column counter with 2

when starting to process a new image (PIXEL_OFFSET_UPPER) and to stop processing of

the last line of the image 2 pixels before the line ends (PIXEL_OFFSET_LOWER).

3.3.4 Label Selection

This component together with the subsequent one are responsible for the actual feature

extraction. The theoretical basics are given in the paper “SoC Processor for Real-Time Object

Labeling in Life Camera Streams with Low Line Level Latency” which can be downloaded in

the additional materials folder. For the implementation, consider the description of the

respective component in the paper (Label Selection, Feature Calculation). The “Merger

Resolution” component in the paper is not relevant here and does not need to be

implemented.

Since the Label Selection component can easily become very extensive, have a look at the

commonality of the different cases and plan a suitable implementation with the help of a

diagram (state machine) before starting with the actual realization. Keep in mind to select an

appropriate set of test signals to allow easy analysis of simulation runs.

During Label Selection, the runs are buffered line-wise and assigned to an appropriate region.

Additionally each region gets a unique number (label). By comparing the position of runs in

the current and the previous line, it is possible to determine, if a new region has to be created,

if the region has to be extended by the current run or if two regions must be merged. In the

latter case one region is expanded while the other one is discarded and marked as invalid. In

this context it is favorable to keep the region with the lower label and discard the one with the

higher label.

When implementing the component you will need an appropriate buffer structure to store the

runs in a BRAM. To compare two runs, the BRAM must be read at two different addresses

simultaneously. This requires two distinct read ports. At the same time the buffer must be

able to store incoming runs from the RLE. Given this requirements, a triple ported BRAM is

a reasonable choice to buffer the runs. Figure 17 shows how to implement such a triple ported

BRAM using two dual ported BRAMs.

© ITIV 2017 DHL Feature Extraction 14

Figure 17: Triple ported BRAM consisting of dual ported BRAMs

3.3.4.1 Working with the template

 There is a template for the triple ported BRAM, open it and realize a triple ported

BRAM according to Figure 17.

 The Feature Calculation is given. It is not necessary to change something.

 In Label Selection you must write a finite state machine (FSM). The input of the FSM

are the runs from the run length encoder. The FSM decides if it has to create a new

feature, update an existing feature or merge two features. The Feature Calculation

component then applies the selected operation and saves the features in an internal

BRAM. The BRAM is connected to the top level through Label Selection such that it

is possible to access to the BRAM from above. This is important because you must set

the IDLE signal in Label Selection. When IDLE is high, the Processing Unit will be

allowed to read out the feature BRAMs.

 Open lable_selection.vhd (Path see section 3.2)

 In the entity, the label selection has the runs as input and the feature BRAM

connections as output.

 Write your FSM in the clock-synchronous processes.

 Test the component with region_detect_tb.vhd.

 Test the whole system with filter_hw_Beispiel1_ppm_RDfile.vhd

 When the simulation was successful, you can start to test on the hardware (see next

section)

3.3.5 Feature Calculation

This component stores information about existing regions and implements updating and

merging operations for the stored regions. As soon as the features have been extracted

completely, they can be read out via the AXI-Bus until the processing chain is loaded with a

new image. The component uses two BRAMs with the first one holding the actual feature

data and the second one indicating if a valid feature is stored at the corresponding address.

Feature Calculation has the following inputs:

 START_POS

 END_POS

 ROW_NUMBER

© ITIV 2017 DHL Feature Extraction 15

 UPDATE

 MERGE

 NEW_FEATURE

The first three represents the runs and the last three the operations.

Definition of the operations:

New Feature: The component will create a new feature with the borders and will write a “1”

in the valid-BRAM.

Update: The component writes the Label-Address in the Regions-BRAM then it waits a

clock-cycle to read out the borders. After that the component compares the borders and writes

them into the BRAM.

Merge: The component writes the two Label-Address to the read pointers. It reads the

borders of the two features and then component compares the borders and writes them into

the BRAM.

Figure 18: Feature Calculation

3.4 System integration and test

After successfully testing the system (on filter_hw level) using simulation, the system can be

implemented and a Boot.bin file is generated. First of all, the system should be verified with

the help of fixed images. If this test is successful, moving pictures from the Kinect camera

can be used for further testing (libfreenect_rghw).

4 Creating a Boot-Binary

To test the developed Hardware on the Zynq-System running a Linux-OS, a Boot-Binary

(BOOT.Bin) has to be created from the .Bit file generated by Vivado and copied to the SD-

Card. This can be done as follows:

 Generate a Bitfile with Vivado

 In Vivado:

FileExportExport Hardware (Include Bitstream)

 In SDK:

File New Project ”Hardware Platform Specification”

 Name the projekt hw_platform_0 and select the .hdf file you just generated. The file

can be found in:

“<Proj_dir>\vivado\projects\adv7511\zed\adv7511_zed.sdk”

 File New Application Project

o Name the projekt zynq_fsbl and click „Next“

© ITIV 2017 DHL Feature Extraction 16

o Select Zynq FSBL

o „Finish“

 Right click on “zynq_fsbl””Build Project”

 Right click on “zynq_fsbl””Create Boot Image”

o Click on “Add”

o select: “<Proj_dir>\SDK\hw_platform_0\XYZ.bit“

o Click on “Add”

o Select: “<Proj_dir>\Uboot_src\u-boot.elf”

o Click on “Create Image”

 Copy BOOT.bin to the SD-Card (ROOT Directory). The file can be found in :

“<Proj_dir>\SDK\zynq_fsbl\bootimage\BOOT.bin“

Important: Keep the correct order of the files!

Correct order:

1. Fsbl.elf

2. XYZ.bit

3. u-boot.elf

© ITIV 2017 DHL Feature Extraction 17

4.1 Useful Hints

4.1.1 AXI-Bus Interface of the Feature Extraction

Name Access Address (Base + x) Byte 3 Byte 2 Byte 1 Byte 0

 Bit 31 – 24 Bit 23 – 16 Bit 15 – 8 Bit 7 – 0

 BUS2IP_BE: 3.Bit BUS2IP_BE: 2.Bit BUS2IP_BE: 1.Bit BUS2IP_BE: 0.Bit

Status Control RW 0x00
-
Bit 31: HIGH

-
Bit 16: reset (self clearing)

- Bit0: idle
Bit1: Pipeline enable

Pixel Data W 0x04 - B G R

H1 Max/Min RW 0x08 h_max h_min

H2 Max/Min RW 0x0c h_max

h_min

S1 Max/Min RW 0x10 - s_max - s_min

S2 Max/Min RW 0x14 - s_max - s_min

Readout Status R 0x18 Bit31: valid_2 count_2 Bit15: valid_1 count_1

 Bit26–24: count_2 Bit10-8: count_1

Readout_Region_1_Addr RW 0x1c - Bit16: READOUT Read_Addr

Readout_Region_1_Left_Right R 0x20 Left_Border Right_Border

Readout_Region_1_Upper_Low
er

R 0x24 Upper_Border Lower_Border

Readout_Region_2_Addr RW 0x28 - Bit16: READOUT Read_Addr

Readout_Region_2_Left_Right R 0x2c Left_border Right_Border

Readout_Region_2_Upper_Low
er

R 0x30 Upper_Border Lower_Border

Table 1: Register map of the Feature Extraction module

© ITIV 2017 DHL Feature Extraction 18

 Table 2: Meaning of the registers in the register map

Register Bits/Name Meaning

Status Control Status bits of the module

 Bit 16: reset (self clearing) Reset module = Soft Reset

 Bit1: Pipeline enable Enable module

 Bit0: idle Image processing completed / Module ready

Pixel Data Possibility to input pixel data using the register interface. RGB color space

H1/H2 Max/Min
S1/S2 Max/Min

Max/Min thresholds for color and saturation which are used by the black/white
filtering. Otherwise: black pixel

Readout Status Indicates if the selected BRAM address contains a valid feature and provides the
label of the feature (Readout chain 1 und 2)

 valid_2/valid_1 Does the address contain a valid feature?

 count_2/count_1 Label of the feature

Readout_Region Interface to read out features from the Core

 …__Addr Read Adress and Read Enable

 Bit16: READOUT Enable for read access

 Read_Addr Address to read from the BRAM

 …_Left_Right Horizontal start and end position of the feature

 …_Upper_Lower Vertical start and end position of the feature

