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1 System Structure and Components 

In the digital Hardware Design Laboratory (DHL), students are introduced to the techniques 

of FPGA-based hardware design. Just like laboratory circuit design (Labor Schaltungsdesign) 

and the Laboratory Software Engineering, DHD is part of the ITIV laboratory project on 

“autonomously driving TivSeg”. Each of the laboratories deals with a different part of the 

TivSeg system with DHL focusing on the image processing chain.  

In the use case scenario of autonomously driving TivSegs, a TivSeg driving in front is 

marked with a two-colored pattern. An FPGA-based image processing system mounted on a 

following TivSeg needs to recognize this pattern in input images by extracting similar 

prominent areas, the so-called Regions. The digital representations of these Regions are called 

Features and can be described by their start/end positions in horizontal and vertical direction. 

In the Software Engineering Laboratory, the extracted Regions/Features are used to detect 

changes in the relative position of two TivSegs in software. This information is used to 

generate control signals for the engines, such that the pursuing TivSeg does not lose sight of 

the pattern and continuously follows the other TivSeg.  

In the autonomous TivSeg project, a Microsoft Kinect camera is used for image capturing. 

The image processing chain extracts two color channels, which roughly correspond to the two 

colors used for the pattern. Each color channel is converted into a black/white image serving 

as input for the so-called Region-Growing algorithm, which infers rectangular Regions from 

the coherent areas in the image.  

The overall system of the ITIV laboratory project is shown in Figure 1. The digital Hardware 

Design (DHD) Laboratory mainly focusses on the system components in the green frame.  
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Figure 1: System overview of the ITIV project laboratories 
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In the DHD laboratory, the ZEDBOARD (http://zedboard.org) is used as target platform. The 

board is equipped with a System-on-Chip (SoC) from the Xilinx Zynq family, which 

integrates reconfigurable FPGA logic and two ARM Cortex M9 processor cores on a single 

chip. The FPGA part of the Zynq is called Processing Logic (PL), whereas the ARM cores 

form the Processing System (PS). Both subsystems are connected by bus interfaces.  

The goal of the laboratory is the realization of the FPGA-logic part of the pattern recognition. 

For that matter, the ARM processors forward pixel data from the Kinect camera to the 

Feature Extraction Core, which will be implemented in this laboratory. This core extracts the 

Features from the input image and later returns them back to the processor. Each Feature is 

represented by a rectangle which bounds an equally colored area in the image.  

A structural overview of the Zynq system realizing the image processing chain is shown in 

Figure 2. The transfer of pixel data from the ARM processors to the Feature Extraction Core 

(AXI Filter) is implemented in the one case using a register based interface, which can be 

accessed via the AXI Lite Bus (a simple peripheral AXI bus). As an alternative, pixel transfer 

can be accelerated using Direct Memory Access (DMA). This is why an AXI Stream 

interface is part of the project templates as shown in the lower branch of Figure 2Figure 1. 

The DDR memory, which is used for the DMA, resides outside of the Zynq Chip and can be 

accessed using the on-chip DDR Memory Controller.  
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Figure 2: Structure of the FPGA-design realizing the Feature Extraction 

 

The overall virtual data path resulting from the structure in Figure 2 in conjunction with the 

provided ARM-software is shown in Figure 3.  
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Figure 3: Data flow of the image processing chain  

Figure 4 shows the general integration of the Feature Extraction Module into the design and 

the interconnection to the AXI bus. The actual bus interface is realized using AXI interfacing 

cores provided by Xilinx (the AXI Lite IPIF and AXI Stream IPIF cores). The user logic 

module is accessed in AXI Lite templates through a register-based interface. Such a template 

was extended using an AXI Stream interface to enable efficient transmission of pixel data 

through the AXI Direct Memory Access (DMA) Core. The top level structure of the actual 

Feature Extraction Pipeline Hardware is illustrated in Figure 5. 

http://zedboard.org/
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Figure 4: Interconnect between the Feature Extraction Pipeline and the AXI bus 

 

The top structure of the image processing chain (Feature Extraction Pipeline Hardware) is 

composed of the components illustrated in Figure 5. 
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Figure 5: Top level structure of the Feature Extraction 

The pattern that is mounted on the TivSeg in the front is shown on the left hand side of Figure 

6. The RGB color space is less suitable for detecting the patter, because fluctuations of the 

ambient light generally affect all coordinates of a color vector in the RGB cube (Figure 6, 

middle). In contrast, the HSV (Hue Saturation Value) color space contains a separate 

coordinate for the brightness (Value), such that changes in ambient light only affect this 

parameter (as long as the ambient light can be assumed to be white). The HSV color space 

can be visualized as a color cone (Figure 6, right hand side) with the hue corresponding to the 

angle, the saturation representing the radius and the value matching the height. Since the 

pattern relies on color differences with large saturation values, the value coordinate can be 

ignored during pattern recognition. Given that, the influence of ambient light fluctuations is 

eliminated through the use of HSV coordinates. For that reason, the first step in the image 

processing chain is the conversion of the input RGB image to HSV color space.  

     

Figure 6: Left: pattern mounted on the TivSegs; Middle: RGB cube1; HSV cone2 

Because the later processing steps rely on black/white images as input, the image data of 

selected color channels are classified and represented by a single bit per pixel. Since the 

pattern contains two relevant colors, two black/white images are generated while each image 

corresponds to one of the two colors. The left side of Figure 7 shows the two black/white 

images generated from the pattern in Figure 6 when pixels of the corresponding color are 

considered white.   

After that, a simple noise reduction is applied on the black/white images by outputting a ‘1’-

pixel only if there are enough ‘1’-pixels present in a selected area of the input image (e.g. 3x3 
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matrix of pixels). This reduces the probability of erroneous pattern detection caused by noise 

and smaller disturbance.  

  

Figure 7: Left, middle: ideal images after the color filtering for blue/pink; Right: run-length encoding3 

After noise filtering, the pixel data is passed over to the so called Region Detect Core. The 

core is composed of the components shown in Figure 8. The fist module is the Run-length 

Encoder (RLE), which operates similar to the transmission encoding used in old fax 

machines. The technique uses start and end markers for each individual series of subsequent 

active pixels (“1”, white in Figure 7) within the same line. A set of markers produced by the 

RLE is referred to as Run. The application of run-length encoding allows large image areas 

with the same color to be stored efficiently and simplifies processing in the subsequent Label 

Selection algorithm.  

The purpose of the Label Selection algorithm is to detect connected areas in the image and 

assign a unique number to each of them. The preceding run-length encoder helps to reduce 

the number of decisions to be made in the process, because a run is always a sequence of 

connected pixels, which can be entirely assigned to one region without considering individual 

pixels. During label selection, each line of the image is compared with the previous line to 

decide if the current run belongs to an existing region (update), if a new region has to be 

created (new feature) or if two previously separated regions have to be merged (e.g. in case of 

the “U” in Figure 7, upper right corner).  

The Feature Calculation block stores and manages the known regions by creating, changing 

or merging entries in the component’s memory according to the operations (New_Feature, 

Update, Merge) specified by the Label Selection algorithm. After completion of the Feature 

Calulation step, the resulting features are accessible to the ARM processor via the register set.  
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Figure 8: Modules of the Region Detect Core 
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2 Provided Material 

For the laboratory, a template design consisting of the Vivado Project including a source file 

hierarchy and a configuration for the ARM-Processor as well as the AXI-Lite Interface of the 

axi_filter_dma component including the register set and wiring within the Feature Extraction 

is provided. 

In contrast to exercise 4, the provided Vivado Designs instantiate the axi_filter_dma 

component outside of the block design. Such as the clock and reset signals, the signals 

connecting the component with the AXI bus have been exposed as external ports of the Block 

Design. The axi_filter_dma component itself has been added to the project as simple set of 

source files.  

This change allows the individual components to be easily simulated using self-written 

testbenches while still being able to generate a bitfile without switching between working 

projects. Additionally, it is not necessary to re-package the axi_filter_dma component after 

the source files have been changed. The functionality of the overall system is not affected by 

this change, but the development of the component in the DHL laboratory is simplified.  

To boot the ARM processors of the Zynq, a Linux system including a kernel image is 

provided on a SD-Card. To run the overall system, it is solely necessary to add a hardware 

binary to the SD Card created from the Vivado design.  

To ease testing of modules, the template folder contains several predefined testbenches for 

different components. If necessary, additional testbenches for your components can be 

written by the laboratory participants.  

3 Tasks and Approach 

In the laboratory, an image processing pipeline should be developed on top of the provided 

templates and the SD-Card containing the provided Linux system.  

3.1 Guidelines Coding  

3.1.1 Coding und Bad Smells 

In case of disadvantageous logic modelling in VHDL, that the logic description 

 Is not synthesizable at all 

 Leads to an inefficient realization (long synthesis times, high consumption of 

resources, bad timing = long asynchronous signal paths between flip-flops) 

 Works in simulations but not on the actual hardware (Simulation mismatch) 

 

Such problematic HDL descriptions should be absolutely avoided, for example: 

 Not synthesizable 

o Wait until (should be avoided), wait for X ns (not synthesizable) 

 Inefficient or not realizable 

o Description of large Memories (Arrays) without using Block-RAMs (BRAM) 

 leads to large Complex Logic-Block (CLB)-Memories („distributed RAM“) 
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o Simultaneous reading/writing of Arrays (CLB-Memories) in different locations 

Solution: better use Dual-Ported Block RAMs or instantiate the same BRAM 

multiple times if absolutely essential. 

o Writing shift-registers/Arrays on a variable Location (Behaviour: „Pointer on 

shift-register“) 

o Multiplication/Division with two variable Inputs without using self-written 

components or hard-blocks. 

Tip: Reduce calculations to multiplications/divisions by the power of two = 

shift operation. 

o Extensive asynchronous processes with a large number of dependencies and 

input variables  

 Simulation Mismatches 

o Extensive use of variables within processes (a:=b, if X; c :=b if Y …) 

o An asynchronous process depends on signals written by other asynchronous 

processes 

Note: Input values of asynchronous processes should always originate from 

synchronous processes/signals! Use pipelining instead of asynchronous 

process dependencies 

o Write to BRAMs using asynchronous signals (Data Input/Write Address Port). 

This does not work in most of the cases. Asynchronously setting the read-

address in contrast mostly works if the address calculation is not too time-

consuming. Anyway, it is strongly recommended to drive inputs of Hard-

Block IPs like BRAMs by signals written in synchronous processes. 

 

Further important coding guidelines can be found in the additional materials for the 

laboratory. Guidelines focusing on Verilog can also be transferred to VHDL in most of the 

cases. For information on the instantiation of hard-blocks such as BRAMs it is recommended 

to take a look on the ug901 Vivado Synthesis Guide, especially on the Chapter “HDL Coding 

Techniques”. 
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3.1.2 Conversion/Casting Integer/Std_logic_vector/Unsigned/Signed 

 

Figure 9: Conversion/Casting between data types in VHDL 

3.2 Implementation and Simulation 

During the seven afternoons of the laboratory, the processing chain should be developed and 

simulated component-wise. Participants should use the provided testbenches for the 

developed components and if necessary verify individual modules with their own tesbenches. 

All results (realization, expected behavior and test outcome) should be documented in the 

laboratory reports (see laboratory bulletin for details).  

There is a sketch of the structure of the Feature Extraction Template in Figure 10. The sketch 

shows that for example the Subsystem convert_filter.vhd consist of the component 

rgb2hsv.vhd and filter_chain.vdh. The RGB2HSV converter in rgb2hsv.vhd reuses the 

divider div_16_8_8.vhd which has been developed in exercise 3. 

You can find all files at: 

..\Feature_Extraction_Template_V3\IP_rep\axi_filter_dma_v1_00_a\hdl\vhdl 

After the individual components where tested, the overall system is simulated incrementally 

by testing distinct subsystems consisting of multiple components (according to Figure 11). 

When testing the subsystem “Converter Filter”, Filter_Chain has to be instantiated twice. 

When testing Region_detect, it also has to be instantiated twice. The successful simulation of 

the components and subsystems needs to be demonstrated to the supervisors. 

The Testbenches are at: 

..\Feature_Extraction_Template_V3\Testbenches 
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Figure 10: VHDL component structure 
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Figure 11: Subdivision of the system in subsystems for structuring and testing purposes 

 

3.3 Individual Components 

The Filter Hardware component is controlled via the register set. Enable activates the 

component, the RGB values are valid if data_rdy is on high-level, the minimum/maximum 

values for hue and saturation are established before starting the actual image processing and 

stay constant afterwards. Each time an image has been processed, a Resetn (low-active) 

switches the system back to the initial state. For that reason, it is important to have a well-

defined initial state with each signal holding a known and reasonable value.  

3.3.1 RGB2HSV 

This component is supposed to realize the conversion from RGB to HSV. For that purpose, 

the algorithm for color space conversion presented in the following should be implemented as 

VHDL logic. In this context it is important to consider the differences between sequential 

programming in C and the simultaneous execution in hardware. Especially the use of 

Pipeline-stages is beneficial to delay intermediate results and provide them as input for 

further calculations in later clock cycles.  
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Since divisions with a divisor, which is not a power of two, cannot be synthesized by the 

VHDL compiler without further ado, the divider developed in exercise 3 should be used here. 

The divider divides a 17-bit two's complement signed by an 8-bit unsigned integer value and 

provides a 9-bit two's complement signed as result (this preserves an 8-bit unsigned 

resolution for further calculations after the division).  

To convert pixel data to the HSV color space, the equations listed below should be used. It is 

important to notice, that these equations assume RGB and SV values to be in the range of [0, 

1]. In the hardware implementation however, 8-bit integer numbers are to be used for those 

values. In case of the hue angle, the implementation should use a 9-bit integer representation 

in degrees (0° - 360°). Furthermore, all the intermediate values such as the results of the 

divisions should be represented as integer values of a defined bit width. To implement the 

equations correctly and efficiently you thus have to make appropriate adaptions.  

 

Precondition: 

  

 
 

 
 

 
 

 
 

 
 

Postcondition: 

3.3.1.1 Working with the template 

This section explains how to work with the template. You can use this procedure for all other 

components. 

 First open rgb2hsv.vhd (Path see section 3.2) 

 The entity is already completely defined and it is not necessary to edit it. 

 In the architecture are some TODO-comments which have to be implemented 

 Use the divider from the third exercise. To do so, use the keyword component to 

include the module and instantiate it twice for Hue and Saturation (this has already 

been done in the template). The next step is to wire the divider using the keyword port 

map. 

 In the next TODO you should describe the behavior of an asynchronous reset. 

 The last TODO is located under rising_edge(clk). There you should implement the 

presented algorithm for convert from the RGB to the HSV color space. It might be 

necessary to create more signals or functions. 
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After implementing the RGB2HSV component, it should be tested. It is not necessary to write 

your own testbench, since there is a predefined one at: 

„\Feature_Extraction_Template_V2\Testbenches\rgb2hsv_tb.vhd“ 

The testbench defines in the beginning two new types “rgb_t” and “hsv_t” and two arrays 

“rgb_data” and “hsv_data” made of these types (each with the size of 1000). The testing logic 

is split into the two processes STIMULI_GEN and RESULT_TEST. Before using the 

testbench, the component under test must first be included. The tested component is also 

called “unit under test” which is why the instance is called “UUT”. 

In the STIMULI_GEN the UUT is fed in each clock cycle with a RGB pixel from rgb_data. 

The RESULT_TEST process monitors the result_rdy ouput. When the output is a high level 

(“1”), the HSV values from the UUT are compared with the correct HSV values form 

hsv_data array. 

With the commands assert, report and severity the data will be compared and an appropriate 

text will be printed with a given category (severity). 

 

Figure 12: Possible structure of a testbench 

More general information about testbenchs are given in „Overview: Testbenches and logic 

simulation in VHDL“ 

To test with Modelsim: 

 Run Modelsim 

 change detection with: cd <new folder> (in the terminal) 

 run the Modelsim-script (DO-file) with: do run.do (in the terminal) 

 

3.3.2 Filter Chain 

This component consists of two digital filters: classify (black/white filter) and filter major 

(noise filter). 

3.3.2.1 Classify 

The module classify verifies every incoming pixel. If the hue and saturation values lie in 

between hue_min/sat_min and hue_max/sat_max, the output value is set to “1”, if not the 

filter returns “0”.  

3.3.2.2 Filter Major 

To generate a low noise image the pixel data is low-pass filtered by the filter major 

component. On the left side in Figure 13 there is shown an ideal image, on the right side is a 

noisy image. The noise may result from fine grained image details or image errors in the 

camera. The basic idea is to suit the real (right) image to the ideal image. This especially 
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reduces the number of runs generated by the run length encoder and the number of regions 

after the label selection.  

 

 

Figure 13: Comparison of an ideal image after color space filtering and a real image with noise incidents, 

which cause a multiplicity of small regions (white dots and artefacts) 

 

The noise filter decides if an output pixel should be “1” or a “0” based on a quadratic 3x3 

Matrix, which is shifted over the whole image (discrete convolution). Thereby, an input 

parameter determines the minimum number of pixels with value “1” inside of a 3x3 block, 

which are required to produce an output of “1”.  

Before starting to compute output pixels, two lines of the input image must be buffered (two 

so called line buffers with block-RAM are required). The line buffers should realize the first 

in, first out (FIFO) principle similar to a shift register. In contrast to shift registers, the line 

buffers should be implemented this behavior using a BRAM. However, data in a BRAM 

cannot be easily moved from one address to the next, which is why the line buffers should be 

realized using to the ring buffer principle (more details can be found in the following section).  

After initially filling the buffers, the decision between the values “0” and “1” starts at the 

third black/white pixel in the third line. To simplify implementation, the buffers are not 

cleared at the end of a line. Instead the filtering process directly continues while the input 

data is buffered for a delay of two lines before using it for a decision on pixel values.  

Using this procedure, each of the components shrinks the output image by two lines while 

sequentially two pixels are cut from the data stream.  
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Figure 14: Image filtering using a 3x3 matrix and a threshold of PIXEL_COUNT=4, the Output pixel is the 

pixel at position (3, 3) of the matrix.A) and B) show consecutive clock cycles. In the upper part of the figure die 
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input picture is shown, below how the entries of the filter matrix (Pixel Matrix) are filled with pixel data. The 

blue dashed lines show where the left image boarder would occur for the pixel data inside the line buffers 

After separate filtering of the hue and saturation images, the output pixels of both filter 

components are combined using the logical AND conjunction. Subsequently another noise 

filtering is applied, to further reduce noise artefacts in the combined output image.  

Overall the signal flow is shown in Figure 15: 

 

Figure 15: Signal flow diagram of Filter Chain 

The size of the final output image of the component is reduced by four lines in the height and 

four pixels sequentially. This circumstance is compensated by the software and has to be 

considered in the design of the following components (e.g. pixel or line counters).  

3.3.2.3 Working with the template 

Figure 10 shows that Filter Chain consists of the components classify and filter major. Again, 

filter major consists of line buffer, which needs ram_db. Therefore, it is useful to work 

bottom up.  

 First open classify.vhd (Path see section 3.2) 

 The entity is already defined completely. It is not necessary to edit it. 

 Your task is to write the architecture. To be synchronous to the other components like 

the RGB2HSV component, it is necessary to choose a suitable sensitivity list. In this 

process you can insert your logic implementation.  

 There is no testbench given since this is a small component. However you can write 

one on your own one using the RGB2HSV testbench as template.  

 In exercise 3 you have already used BRAMs. The component ram_dp is a dual ported 

Block RAM.  

 Find an efficient way to implement a FIFO as ring buffer, when the read- and write 

pointer of the dual ported BRAM are available (see Figure 16). How many addresses 

does the line buffer need? 

 

Figure 16: Line buffer implementation using the ring buffer principle 

 Test your line buffer using the provided testbench. 

 Open filter_major.vhd (Path see section 3.2) 

 The component linebuffer is already included, instantiate it twice. Find a way to 

realize the filter shown in Figure 14. Use one or more clock-synchronous processes. 
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 Test your filter with filter_major_tb.vhd. Note that the size of the image will change 

and some pixel will get the value U (Uninitialized). 

 Now, the subsystem filter_chain is complete. It is not necessary to test the whole 

subsystem because all components in this subsystem have been tested separately. It 

might be useful to calculate the size of the image after passing the subsystem. 

3.3.3 Run-length Encoder 

The run-length encoder extracts runs consisting of a start and end position from the input 

pixel stream. Additionally “end of line“ and “end of file” signals are generated to enable 

determination of the current line number in later processing steps. Without these signals, it 

would not always be possible to determine the current line number in the run length encoded 

image if there exists a line without any runs.  

In the run-length encoder, it is reasonable to skip the 4 lines lost in the Converter Filter 

component at the end of the image (LINES_LOST), to initialize the column counter with 2 

when starting to process a new image (PIXEL_OFFSET_UPPER) and to stop processing of 

the last line of the image 2 pixels before the line ends (PIXEL_OFFSET_LOWER). 

3.3.4 Label Selection 

This component together with the subsequent one are responsible for the actual feature 

extraction. The theoretical basics are given in the paper “SoC Processor for Real-Time Object 

Labeling in Life Camera Streams with Low Line Level Latency” which can be downloaded in 

the additional materials folder. For the implementation, consider the description of the 

respective component in the paper (Label Selection, Feature Calculation). The “Merger 

Resolution” component in the paper is not relevant here and does not need to be 

implemented.  

Since the Label Selection component can easily become very extensive, have a look at the 

commonality of the different cases and plan a suitable implementation with the help of a 

diagram (state machine) before starting with the actual realization. Keep in mind to select an 

appropriate set of test signals to allow easy analysis of simulation runs.   

During Label Selection, the runs are buffered line-wise and assigned to an appropriate region.  

Additionally each region gets a unique number (label). By comparing the position of runs in 

the current and the previous line, it is possible to determine, if a new region has to be created, 

if the region has to be extended by the current run or if two regions must be merged. In the 

latter case one region is expanded while the other one is discarded and marked as invalid. In 

this context it is favorable to keep the region with the lower label and discard the one with the 

higher label.  

When implementing the component you will need an appropriate buffer structure to store the 

runs in a BRAM. To compare two runs, the BRAM must be read at two different addresses 

simultaneously. This requires two distinct read ports. At the same time the buffer must be 

able to store incoming runs from the RLE. Given this requirements, a triple ported BRAM is 

a reasonable choice to buffer the runs. Figure 17 shows how to implement such a triple ported 

BRAM using two dual ported BRAMs. 
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Figure 17: Triple ported BRAM consisting of dual ported BRAMs 

3.3.4.1 Working with the template 

 There is a template for the triple ported BRAM, open it and realize a triple ported 

BRAM according to Figure 17. 

 The Feature Calculation is given. It is not necessary to change something. 

 In Label Selection you must write a finite state machine (FSM). The input of the FSM 

are the runs from the run length encoder. The FSM decides if it has to create a new 

feature, update an existing feature or merge two features. The Feature Calculation 

component then applies the selected operation and saves the features in an internal 

BRAM. The BRAM is connected to the top level through Label Selection such that it 

is possible to access to the BRAM from above. This is important because you must set 

the IDLE signal in Label Selection. When IDLE is high, the Processing Unit will be 

allowed to read out the feature BRAMs. 

 Open lable_selection.vhd (Path see section 3.2) 

 In the entity, the label selection has the runs as input and the feature BRAM 

connections as output.  

 Write your FSM in the clock-synchronous processes. 

 Test the component with region_detect_tb.vhd. 

 Test the whole system with filter_hw_Beispiel1_ppm_RDfile.vhd 

 When the simulation was successful, you can start to test on the hardware (see next 

section) 

3.3.5 Feature Calculation 

This component stores information about existing regions and implements updating and 

merging operations for the stored regions. As soon as the features have been extracted 

completely, they can be read out via the AXI-Bus until the processing chain is loaded with a 

new image. The component uses two BRAMs with the first one holding the actual feature 

data and the second one indicating if a valid feature is stored at the corresponding address.  

Feature Calculation has the following inputs: 

 START_POS 

 END_POS 

 ROW_NUMBER 
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 UPDATE 

 MERGE 

 NEW_FEATURE 

The first three represents the runs and the last three the operations.  

Definition of the operations: 

New Feature: The component will create a new feature with the borders and will write a “1” 

in the valid-BRAM. 

Update: The component writes the Label-Address in the Regions-BRAM then it waits a 

clock-cycle to read out the borders. After that the component compares the borders and writes 

them into the BRAM.  

Merge: The component writes the two Label-Address to the read pointers. It reads the 

borders of the two features and then component compares the borders and writes them into 

the BRAM. 

 

 

Figure 18: Feature Calculation 

 

3.4 System integration and test 

After successfully testing the system (on filter_hw level) using simulation, the system can be 

implemented and a Boot.bin file is generated. First of all, the system should be verified with 

the help of fixed images. If this test is successful, moving pictures from the Kinect camera 

can be used for further testing (libfreenect_rghw).  

4 Creating a Boot-Binary 

To test the developed Hardware on the Zynq-System running a Linux-OS, a Boot-Binary 

(BOOT.Bin) has to be created from the .Bit file generated by Vivado and copied to the SD-

Card. This can be done as follows: 

 Generate a Bitfile with Vivado 

 In Vivado: 

FileExportExport Hardware (Include Bitstream)  

 In SDK:  

File  New  Project  ”Hardware Platform Specification” 

 Name the projekt hw_platform_0 and select the .hdf file you just generated. The file 

can be found in: 

“<Proj_dir>\vivado\projects\adv7511\zed\adv7511_zed.sdk” 

 File  New  Application Project 

o Name the projekt zynq_fsbl and click „Next“ 
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o Select Zynq FSBL 

o „Finish“ 

 Right click on “zynq_fsbl””Build Project” 

 Right click on “zynq_fsbl””Create Boot Image” 

o Click on “Add” 

o select: “<Proj_dir>\SDK\hw_platform_0\XYZ.bit“ 

o Click on “Add” 

o Select: “<Proj_dir>\Uboot_src\u-boot.elf” 

o Click on “Create Image” 

 Copy BOOT.bin to the SD-Card (ROOT Directory). The file can be found in : 

“<Proj_dir>\SDK\zynq_fsbl\bootimage\BOOT.bin“ 

 

Important: Keep the correct order of the files!  

 

Correct order: 

1. Fsbl.elf 

2. XYZ.bit 

3. u-boot.elf 
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4.1 Useful Hints 

4.1.1 AXI-Bus Interface of the Feature Extraction  

Name  Access  Address (Base + x)  Byte 3  Byte 2  Byte 1  Byte 0  

      Bit 31 – 24  Bit 23 – 16  Bit 15 – 8  Bit 7 – 0  

      BUS2IP_BE: 3.Bit  BUS2IP_BE: 2.Bit  BUS2IP_BE: 1.Bit  BUS2IP_BE: 0.Bit  

Status Control  RW  0x00  
- 
Bit 31: HIGH  

-  
Bit 16: reset (self clearing)  

-  Bit0: idle  
Bit1: Pipeline enable  

Pixel Data  W 0x04  -  B  G  R  

H1 Max/Min  RW  0x08  h_max    h_min    

H2 Max/Min  RW  0x0c  h_max  

 

h_min    

S1 Max/Min  RW  0x10  -  s_max  -  s_min  

S2 Max/Min  RW  0x14  -  s_max  -  s_min  

Readout Status  R  0x18  Bit31: valid_2  count_2  Bit15: valid_1  count_1  

      Bit26–24: count_2    Bit10-8: count_1    

Readout_Region_1_Addr  RW  0x1c  -  Bit16: READOUT  Read_Addr    

Readout_Region_1_Left_Right  R  0x20  Left_Border    Right_Border    

Readout_Region_1_Upper_Low
er  

R  0x24  Upper_Border    Lower_Border  
  

Readout_Region_2_Addr  RW  0x28  -  Bit16: READOUT  Read_Addr    

Readout_Region_2_Left_Right  R  0x2c  Left_border    Right_Border    

Readout_Region_2_Upper_Low
er  

R  0x30  Upper_Border    Lower_Border  
  

Table 1: Register map of the Feature Extraction module  
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 Table 2: Meaning of the registers in the register map 

 

Register Bits/Name Meaning 

Status Control Status bits of the module 

 Bit 16: reset (self clearing) Reset module = Soft Reset 

 Bit1: Pipeline enable Enable module 

 Bit0: idle Image processing completed / Module ready  

  

Pixel Data Possibility to input pixel data using the register interface. RGB color space 

  

H1/H2 Max/Min 
S1/S2 Max/Min 

Max/Min thresholds for color and saturation which are used by the black/white 
filtering. Otherwise: black pixel 

  

Readout Status Indicates if the selected BRAM address contains a valid feature and provides the 
label of the feature (Readout chain 1 und 2) 

 valid_2/valid_1 Does the address contain a valid feature? 

 count_2/count_1 Label of the feature 

  

Readout_Region Interface to read out features from the Core 

 …__Addr Read Adress and Read Enable 

 Bit16: READOUT Enable for read access 

 Read_Addr Address to read from the BRAM  

 …_Left_Right Horizontal start and end position of the feature 

 …_Upper_Lower Vertical start and end position of the feature 


